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ABSTRACT

We propose two parallel implementations of popular sub-

graph isomorphism solvers: VF2 and Glasgow. The re-

cursive DFS in VF2 was parallelized using OpenMP tasks,

and we aimed to limit the excessive work done by addi-

tional threads. In Glasgow, we parallelized the complete

algorithm using OpenMP, and we put special attention to

compiler optimizations and OpenMP task amount limita-

tion. Furthermore, a large section of Glasgow was paral-

lelized with MPI one-sided communication. All the imple-

mentations are benchmarked on a wide range of graph pairs

from literature, and we compare our Glasgow OpenMP im-

plementation with the parallel version proposed by the au-

thor of Glasgow algorithm. We discuss when good scaling

can be expected, and where improvements are possible.

1. INTRODUCTION

The subgraph isomorphism problem is concerned with find-

ing a pattern graph within a larger target graph. Applica-

tions include chem- and bioinformatics, design of electric

circuits, computer vision, and pattern recognition. Multiple

algorithms exist for subgraph isomorphism, such as nRF+

[1], VF2 [2], and Glasgow [3], the common idea in most of

them is similar to the constraint-based search approach by

Ullmann [4].

We focus on VF2 and Glasgow, as VF2 is commonly

used for benchmarking and Glasgow is currently the fastest

algorithm for solving hard instances. Experiments by Mc-

Creesh and Prosser [3] also indicate that VF2 is the best

choice for short runtimes, whereas Glasgow has better suc-

cess rates on harder problems.

Subgraph Isomorphism is an NP-hard problem. Even

though there are some very good heuristic algorithms, they

don’t work efficiently for different applications. The aim

of this work is to introduce parallelism for these algorithms

that scale on a variety of problems.

In this work, we present our strategies to parallelize VF2

and Glasgow algorithm. We discuss how shared memory

and distributed memory paradigm works in our context. We

will present and discuss our results using speedup plots and

runtime analysis of algorithms.

2. ALGORITHMS AND RESEARCH

There are two types of subgraph isomorphism: induced and

non-induced. For non-induced subgraph isomorphism, ad-

ditional edges not contained between the nodes in the pat-

tern graph can exist in the target graph. For induced SI, all

edges between our mapped nodes have to be included, addi-

tional edges within the target graph are not allowed; this is

the definition we went for in this project. Note that to com-

pare with VF2, we adapted the Glasgow algorithm to solve

for induced subgraph isomorphism. Additionally, we allow

loops (an edge from a node to itself) and restrict ourselves

to non-attributed, undirected graphs. Throughout this work,

we stop the search if a satisfactory mapping has been found,

i.e. we look if pattern and target graph are isomorphic to

each other rather than finding all possible mappings.

VF2. VF2 [2] algorithm is a state-space exploration al-

gorithm, which maintains partially mapped nodes between

pattern and target graph. We present pseudo code for this

in Algorithm 1. It uses the partially mapped state to de-

cide which pair of candidates (line 3) to explore and intro-

duces feasibility rules (line 4) to prune its search tree. These

feasibility rules check three necessary constraints for sub-

graph isomorphism. Then it recursively searches (line 7) by

adding each feasible pair to the current state variable. We

can see that the algorithm dynamically expands its search

space and does DFS to find a solution. However, it might

explore an exponential number of states in the worst case.

Algorithm 1 VF2

1: procedure VF2(pattern, target, state=φ)

2: if state is full then return State

3: candidates← findCandidates(pattern, target, state)

4: for each candidate c in candidates do

5: if c satisfy feasibility rules then

6: NewState← state.addCandidates(c)

7: results← VF2(pattern, target, NewState)



Algorithm 2 Glasgow (induced subgraph isomorphism)

1: procedure GLASGOW(pattern, target, k, l)

2: if pattern.size > target.size then return false

3: Remove isolated vertices in pattern

4: L← Build Supplemental Graphs (k,l)

5: D ← Initialize Domains

6: if ! Check all different (D) then return false

7: result← search & assign (D,L)

Glasgow. The main idea behind Glasgow (Alg. 2) is

to introduce implied constraints, which are generated by in-

cluding supplemental graphs (line 4). A supplemental graph

defined by parameters (k, l) has an edge between two nodes

if there are at least k paths of length l between them in the

initial graph. We do this for k = 2, 3 and l = 1, 2, 3. Then,

we look for a mapping which is simultaneously a subgraph

isomorphism between all those pairs of graphs in L. [3]

The second step is initialising a set of nodes in the tar-

get graph where a pattern node can be mapped to. During

the initialisation of domains (line 5), we check for degree

and neighbourhood consistency between all the supplemen-

tal pattern-target pairs.

After checking an all-different constraint (line 6), we

start a recursive search (line 7). After some sorting-heuristics,

we pick a pattern node p, and loop over the target nodes in

its domain Dp. With this assignment in mind, we update the

other nodes’ domains and remove target nodes from their

domain where the mapping is impossible. As long as all

nodes can be mapped, we recursively search again. Other-

wise, we try the next node in our initial domain Dp.

The paper [3] presented a version of Glasgow algorithm

for non-induced subgraph isomorphism. As we aimed for

induced SI, we adapted the algorithm where required, while

maintaining the general structure. We add the constraint that

if v is not connected to w in the pattern graph, then their

image (their paired vertex in the mapping) i(v) and i(w) in

the target graphs are neither [5].

We also use a different graph structure than the one pro-

posed in the paper [3]. While the authors use bit-set graphs,

we use C++ vectors to store our adjacency matrices. Never-

theless, an adaption to bit-set graphs was considered but not

realized yet.

3. PARALLEL IMPLEMENTATIONS

VF2 OpenMP. As explained before, VF2 recursively em-

ploys a Depth First Search (DFS) strategy on search space

to find an optimal solution. We tried to parallelize this re-

cursive search using data parallelism. In this context, all

threads can work independently on some parts of the tree

and keep expanding the search tree until one finds a solu-

tion. At this point, the terminal thread needs to communi-

cate with every other thread to stop processing further and

return the result. A similar approach has been tried in the

past [6], the only difference being they have explored the

whole search space without stopping at the first solution.

Ideally, a termination call is the only communication needed

between threads. In such a case, one would expect good

load balancing between threads and higher speedups. How-

ever, we will explain some limitations of this strategy below.

We implemented a parallel recursive search using OpenMP

tasks. OpenMP tasks provide a good way to parallelize re-

cursive functions [7]. In this approach, one thread creates

a pool of subtasks from a single call of a function. Once

all tasks are generated threads can work independently on

each task and might generate nested tasks if required. In

our case, one thread will create subtasks for some search

tree branches at a specific level. However, a drawback of

this approach is that tasks are not guaranteed to run in the

order they are generated. This has big implications on our

algorithm since our strategy is to run DFS. Without a spe-

cific order, we might start exploring a different branch of

the search tree. Since threads working on each branch will

generate more tasks (search space to explore), this might

slow down our algorithm. We tried to get around this using

OpenMP tasks priority, however, it did not give us any im-

provement. Another drawback of tasks is that with nested

tasking, the task generation process might overcome actual

work. To solve this, we used the final-clause to make sure

we do not generate more tasks after a thread reaches a cer-

tain depth.

Another approach to parallelize recursive algorithms is

to use a stack-based representation for each function call.

In this approach, rather than recursively calling functions,

we put newly generated states in a stack (Last In First Out

- LIFO). However, this approach requires communication

between threads for each Push and Pull. Also, writing the

states to the main stack was a costly operation and it dom-

inates the runtime in the cases where we need to explore a

large number of states. Since this overhead was very large

for our datasets, we did not pursue this option further and

we leave it as an open question for further investigation.

Glasgow MPI. We use MPI to parallelize the function

build supplemental graphs from the Glasgow algorithm. Each

processor works on a subset of vertices according to its rank.

It builds the subgraphs for all the supplemental graphs. The

processor 0 (master), P0, constructs the final supplemen-

tal graphs by combining the information of every processor

(servants), and their subgraphs.

Each servant puts in a pattern and target buffer the edges

found in the supplemental graphs, connected to its subset

of vertices. The master gathers the buffers. By iterating

on the buffers, the master constructs two objects pattern

graphs and target graphs that contain the edges for all pairs

of supplemental graphs. For small graphs, the two-sided



communication worked well, but we faced some problems

with memory space for bigger graphs. One-sided commu-

nication helped. We open a window for processor 0, so that

each processor can put its pattern and target buffers into the

window. The master iterates on the buffers to add edges into

the two global objects, pattern graphs and target graphs.

With two-sided communication, using MPI Gather, we

faced some difficulties with memory space for big graphs.

Instead of sending a buffer containing all the edges for a

subset of vertices, we thought of sending each new edge at a

time. Using, MPI Send and MPI Recv, we did not have any

problem with the size of information in the communications

between servants and master. However, we quickly had too

many communications to handle. Then, we looked at one-

sided communication: if each processor put its buffers into a

window with MPI Put, the communication servants-master

is easier to manage. Since the result of concurrent MPI Put

is undefined, we used fences to achieve active synchroniza-

tion on the memory window. In this case, we didn’t face any

space limit. Alternatively, we have also tried to open a win-

dow for each processor, and use MPI Get for the master to

fetch the buffers from the servants. The code to implement

this method was slightly more complex than with MPI Put.

Glasgow OpenMP. Initial runtime tests showed that for

graphs with lots of nodes, building supplemental graphs

dominates runtime. This method has a simple structure: In

total 9 for-loops, each nested in an if-clause and all inde-

pendent. But instead of parallelizing these blocks which are

difficult to balance, we parallelize the outermost for-loop

within each block, where iterations are also independent.

To limit the overhead, we create the threads at the start of

the method and just fork them at the beginning of each loop.

Since each call from the outermost for-loop is independent,

we add the no-wait clause for even better load balancing,

as well as dynamic schedulers (varying block sizes did not

influence the performance). This method scaled quite well

without compiler optimization (i.e. optimization level -O0),

and while switching on compiler optimization did reduce

the sequential runtime, the parallel runtimes failed to de-

crease any more on strong scaling, see fig. 1.

Investigations on this behaviour are suggesting that the

compiler removes the fork-call at the beginning of each sec-

tion because it does not understand how to optimize the

reads from other supplemental graphs which are written in

parallel, although we guaranteed mutual exclusion with an

if-clause. To solve this, we proposed a simpler method: In-

stead of reading, we count how often a connection occurs,

and we store it in a vector. Finally, we loop (in parallel) over

this vector, and build the supplemental graphs according to

the edge-count in the vector. Now, compiler optimization is

working as expected, and we even managed to reduce the

sequential runtime.

Second, we tackled the initialization of domains. This
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Fig. 1. Runtimes w.r.t. compiler optimization levels

(Dataset: scalefree-F, N=20).

method is comprised of a while-loop with multiple nested

for-loops. Since the while-loop is sequential and the num-

ber of iterations is data-dependent, we forked on the nested

for-loops. We faced two challenges there: The write to a

union domain needs to be in a critical section, and just wrap-

ping for-loops with pragma omp parallel for would create a

huge thread-creation overhead, since threads are opened and

closed again in every iteration in the while loop. We there-

fore create the threads outside the method and fork them at

the beginning of a parallel section.

To make search & assign on top of the previously initial-

ized domains parallel, we use OpenMP tasks. Investigating

the topology of the average search tree revealed that while

it is wide in the first couple of levels, the assignments in

each node prunes the available domains so that the branch

is rendered almost sequential, i.e. every node can only be

mapped to one target-node. Furthermore, we are most likely

to make wrong decisions on the top levels, where the value-

ordering heuristics are not so confident. Therefore, we let

the first thread run through the first level, creating new tasks

if the assignment is successful. To guarantee that at least

one thread follows the sequential search order, preventing

worse than sequential runtime, an if-clause associated to the

task creation evaluates to false (i.e. threads executes the new

task immediately) in two cases: When there is no free thread

available to instantly take the task, or if we reached a cer-

tain, empirically obtained threshold level, where the branch

is likely to be almost sequential. If the second case is trig-

gered, this thread actually always goes depth-first from here

instead of looping over all possible assignments first. If a

thread finds a solution, we atomically write the node cor-

respondences and forbid other threads to overwrite assign-

ments. Finally, we cancel all open tasks and exit the search.



4. EXPERIMENTAL RESULTS

Setup and Dataset.

Our algorithms were implemented in C++, and com-

piled using gcc version 4.8.2 (GCC). For OpenMP, we used

version 4.5 and the following flags: -O3 -g -fopenmp. For

MPI, we used the Open MPI 1.6.5 version. We performed

our experiments on the Euler clusters, testing up to 16 pro-

cessors and 16 threads. For evaluation, the ”LV”, ”SI”,

”scalefree” and the ”images” [5] families were used to eval-

uate both Glasgow and VF2, where their pattern/target pairs

are a mix of satisfiable and unsatisfiable queries. A brief

summary of the number of instances and the number of

nodes within pattern/target graphs are provided in Table 1.

Since some instances require much more time to solve, we

used timeouts to limit the explorations on these cases.

Table 1. Families of benchmark instances

Dataset
# of Nodes

Nr. pairs
Target Pattern

LV 10-128 10-128 793

SI 200-1296 20-60% of target 1170

Scalefree 200-1000 90% of target 100

Images 201-5631 8-199 222

VF2 OpenMP results. VF2 algorithm is slow on large

graphs. To do fast testing and maintain balanced runtimes,

we terminated at runtimes which are greater than 1000 sec-

onds in the sequential or single-threaded version. As we

discussed, the parallel implementation of VF2 suffers from

doing extra work. As we increase the number of threads,

we might do more unusable work. As we can see from fig.

2, the algorithm does not scale very well with increasing

number of threads. Another thing to notice is that speedup

variability increases with the number of threads. This can

be explained by speculative redundant work done by paral-

lel threads.
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Fig. 2. Performance of VF2 OpenMP implementation

(speedup w.r.t. single thread) (Dataset size: LV = 472, SI

= 595, Scalefree = 24)

Another interesting thing to look at is whether the al-
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Fig. 3. Performance overview of all successfully conducted

experiments (speed up w.r.t. single thread) (N = 1091)

gorithm scales with larger graph search space (i.e. larger

runtimes). As we can see from fig. 3, speedups increase

with runtime for a single thread, because now parallel work

done by threads is more likely to be useful.

Glasgow MPI results. MPI parallelism was introduced

for the build supplemental graph method of Glasgow, and

we tested it on a subset of pairs from three of our graph

datasets (SI, LV and scalefree). From fig. 4, we observe

good speedups with efficiencies of above 50% at 16 proces-

sors. The missing efficiency can be explained by overhead

and especially due to difficult work balancing when splitting

the graphs for each processor to work on (every processor

gets an equal amount of nodes, but densities may vary).
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Fig. 4. Performance overview of build supplemental graphs

on MPI (speed up w.r.t. single thread) (N = 486)

Glasgow OpenMP results. All tests were completed

multiple times and on different numbers of threads. To

limit the total runtime, a timeout of 600 seconds was set.

Aborted experiments have been removed from the results.

All experiments in this section were set to cancel if a solu-

tion has been found, thus computed runtimes will show high

variances (if the solution is found on the left-most branch,

our parallel search will not yield any performance improve-

ments).

A total of 1926 instances have been solved successfully,

while 359 instances aborted due to the set time limit. In fig.

5, the conducted experiments are visualized. The previously

formulated hypothesis, of expecting high variances due to



cancellation when the solution is found, manifests itself. Es-

pecially at lower runtimes (< 1.0s), we observe hardly any

speedup. The heavy pruning of the search space from using

implied constraints via supplemental graphs often makes

search & assign fully sequential for smaller graphs, and

since this method is dominant on easy instances, we do not

observe great scaling there. For harder graph pairs, we have

to search through a bigger chunk of the search space, thus

speculative work done is more often effective, and we ob-

serve higher efficiencies. Furthermore, on simpler instances

with runtimes < 1.0s, thread-creation overhead further lim-

its the improvements.
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Fig. 5. Performance overview of all succesfully conducted

experiments (N=1926, speedup w.r.t. single thread).

Our experiments are comprised of different graph fami-

lies, thus we were interested in how good our implementa-

tion scales on each of them. In fig. 6, we observe the best

improvements for the PR-15 and CVIU-11 image datasets.

Those graphs generally have lots of nodes but relatively low

densities and most of the pairs do not show subgraph iso-

morphism. For smaller, complex cases, especially the SI

dataset, we observe the smallest speedups. Most of these

graph pairs are isomorphic to each other, which hints that

our scaling indeed depends on the isomorphism result.
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Fig. 6. Performance of Glasgow OpenMP implementation

on different datasets w.r.t. single threaded runtime (Dataset

size: LV=759, SI=860, scalefree=100, images=207).

Investigating runtime and scaling of our three main meth-

ods, see fig. 7, we observe that search & assign and build

supplemental graphs have the largest runtimes on a single
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Fig. 7. Section runtimes on 1 thread and speedups by sec-

tion(w.r.t single thread runtime), only instances with seq.

runtimes > 30.0s included (N=407).

thread, and while both have good performance improve-

ments, build supplemental graphs scales best. For search,

we observe large variances because of the search space be-

ing completely sequential on satisfactory instances, while

on bad instances we look on a bigger chunk of the search

space, thus speculative work done is actually beneficial. Ini-

tialize domains has low speedups, but this is most probably

due to being dominated by thread-creation overheads, tak-

ing the generally low runtime into account.

5. COMPARISONS

Glasgow comparison with literature. The algorithm pro-

posed in [3] was also parallelized using C++ native threads.

Therefore, we compare the Glasgow OpenMP implementa-

tion against the original parallel method. Though, there are

some key differences between the two implementations:

• The original paper worked on bitset-graphs [3], which

clearly outperforms our implementation (adjacency

matrix with two-dimensional vector). Therefore, the

total runtime will certainly be worse in our implemen-

tation.
• McCreesh implemented work stealing, which certainly

improves load balancing in the search & assign method.
• Our implementation relies on the new proposed opti-

mizations in build supplemental graphs presented in

section 3.
• The algorithmic setup was non-induced subgraph iso-

morphism for both implementations, as opposed to

the other implementations discussed in this work.

All experiments were conducted on the same experi-

mental setup as outlined in section 4, and with compiler

optimization -O3.

Fig. 8 shows the number of instances that can be solved

up to a certain runtime on 16 threads, both for our imple-

mentation and McCreesh’s, respectively. Latter is clearly

outperforming us by a factor of 10+. Again, this is most

probably because of the different graph implementations.
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Fig. 8. Comparison of solved instances by runtime between

our implementation and literature (N=2129).

Comparing efficiency of both implementations, see fig.

9, we actually observe less differences. The median of the

speedup is almost identical for both implementations, but

ours has much higher and non-symmetrical variance. Though

we have not implemented work stealing, we outperform them

on several instances. Reasons for that are probably really

good task scheduling by OpenMP and improved total task

amount limitation and fast cancellation in our code. Finally,

also our adapted build supplemental graph section might

have impacted this plot, but we could not verify this yet

since the original code does not provide sectional runtimes.
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Fig. 9. Comparison of speedup on 16 threads by datasets

for all succesful experiments conducted (N=2129).

Glasgow vs. VF2. Comparing the two algorithms we

implemented, we observe what literature ([3] [5]) suggests:

Glasgow algorithm is faster than VF2, though the differ-

ences are not that massive, see fig. 10. On lower instances

(runtimes less than 10ms), VF2 performs better than Glas-

gow, because supplemental graphs just add additional over-

head there. The implied constraints do not make up this

difference on such small instances. On harder instances, we

see that Glasgow performs significantly better because there

the implied-constraints heavily prune the domains.
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6. CONCLUSIONS

We presented an analytical and experimental evaluation of

two algorithms - VF2 and Glasgow- using OpenMP, and

MPI. Parallelizing sequential algorithms require attention to

how compiler optimization can hinder efficiency. Our im-

plementations take this into consideration and we redo parts

of the original code to make it efficient. We also discussed

limitations of OpenMP tasks in solving recursive functions

where the strong ordering of the threads is of high impor-

tance. In MPI-communication with large data transfer, we

should consider switching to one-sided communication. We

showed how we could leverage this idea for our algorithm.

Future Work. The biggest drawback of our implemen-

tation remains the slow graph implementation. Therefore,

we suggest using bitset-graphs [3], and combine them with

SIMD fine-grain parallelism. Initial tests suggest that SIMD

on our graph methods might bring significant performance

improvements in the Glasgow algorithm. Work stealing,

e.g. with Intel TBB, combined with our task limitation

strategies are also potential optimizations.
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